If you can solve, I will be very impressed.
The area of a rectangle is 108m^2 and its diagonal is 15m. Find the perimeter of the rectangle.

Respuesta :

Answer:

42m

Step-by-step explanation:

Given: Area of rectangle= 108[tex]m^{2}[/tex]

           Diagonal= 15m

Lets assume the value of width of rectangle be `w` and length be `l`.

We know that Area of rectangle= [tex]w\times l[/tex]

∴ [tex]108= w\times l[/tex]

cross multiplying both side

⇒ [tex]w= \frac{108}{l}[/tex]

w= [tex]\frac{108}{l}[/tex]

Now solving to get value for l and w.

Remember, [tex]Diagonal^{2} =l^{2} +w^{2}[/tex]

⇒ [tex]15^{2} = l^{2} +w^{2}[/tex]

Next substituting the value of w in the equation.

⇒ [tex]225= l^{2} +(\frac{108}{l}) ^{2}[/tex]

Opening parenthesis

⇒[tex]225= l^{2} + \frac{11664}{l^{2} }[/tex]

Now taking LCD and cross multiplying both side.

⇒ [tex]225l^{2} = l^{4} + 11664[/tex]

Use quadratic equation to solve.

∴ [tex]l^{4} -225l^{2} +11664= 0[/tex]

⇒ [tex]l^{4} -144l^{2} -81l^{2} -11664=0[/tex]

Solving it we get two value of l, which is 9 and 12.

We can use any these value of l in substituting.

∴ w= [tex]\frac{108}{9} = 12m[/tex]

l= 9m and w= 12m

Now, solving to get perimeter of the rectangle.

perimeter= [tex]2(w+l)[/tex]

⇒ Perimeter= [tex]2\times (12+9)= 2\times 21[/tex]

Perimeter of the rectangle is 42m.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE