The Rockwell hardness index for steel is determined by pressing a diamond point into the steel and measuring the depth of penetration. For 50 specimens of a certain type of steel, the Rockwell hardness index averaged 62 with a standard deviation of 8. The manufacturer claims that this steel has an average hardness index of at least 64. Test this claim at the 1% significance level?

Respuesta :

Answer:

We conclude that the steel has an average hardness index of at least 64.

Step-by-step explanation:

We are given the following in the question:

Population mean, μ = 64

Sample mean, [tex]\bar{x}[/tex] = 62

Sample size, n = 50

Alpha, α = 0.051

Sample standard deviation, s = 8

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu = 64\\H_A: \mu < 64[/tex]

We use one-tailed(left) z test to perform this hypothesis.

Formula:

[tex]z_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}} }[/tex]

Putting all the values, we have

[tex]z_{stat} = \displaystyle\frac{62 - 64}{\frac{8}{\sqrt{50}} } = -1.767[/tex]

Now, [tex]z_{critical} \text{ at 0.05 level of significance } = -2.33[/tex]

Since,  

[tex]z_{stat} > z_{critical}[/tex]

We fail to reject the null hypothesis and accept the null hypothesis. Thus, we conclude that the steel has an average hardness index of at least 64.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE