A company that produces garden hoses claims their product has a lifespan of at least 20 years. Thus, they came up with the following hypothesis test.

H0 : μ ≥ 20
Ha : μ < 20

A sample of 50 garden hoses provided a mean lifespan of 19.4 years, with a (population) standard
deviation of 2.

(a) Compute the z-value test statistic

B) what is the p-value?

c) Using α = 0.05, do you Reject H0 or Fail to reject H0?

Respuesta :

Answer:

(a) z-value = -2.12

(b) p-value = 0.0170

(c) Reject H0

Step-by-step explanation:

(a)

[tex]std-err=\frac{std-dev}{\sqrt{n}}=\frac{2}{\sqrt{50}}=0.2828[/tex]

[tex]z-value=\frac{X-mean}{std-err}=\frac{19.4-20}{0.2828}=-2.12[/tex]

(b)

with

z-value = -2.12

significance level = 0.05

one-tail hypothesis (H0: μ ≥ 20)

We can see on the normal distribution table (Z-Score table) that

p-value = 0.0170

(c)

Since p value (0.0170) is less than α=0.05 we reject H0

Hope this helps!

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE