contestada

I have a cup of hot coffee at 140 oC but I want to cool it to 110 oC. My cup holds about 0.3 kg of coffee. Fortunately, I have a bunch of aluminum cubes in the freezer that I can drop into my hot coffee to cool it down.

If each aluminum cube has a mass of 1 g (not 1 kg!) and my freezer keeps its contents at a temperature of –10 oC, how many cubes do I have to drop into my coffee? The specific heat of water is around 4000 joules/kg/oC and aluminum is about 900 joules/kg/oC. (Pick the answer closest to the true value and ignore any thermal losses to surroundings.)

A. 200
B. 330
C. 400
D. 110
E. 88

Respuesta :

Answer:

The correct answer is option B.

Explanation:

In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.

[tex]q_1=-q_2[/tex]

[tex]m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)[/tex]

where,

[tex]C_1[/tex] = specific heat of metal = [tex]900 J/kg^oC[/tex]

[tex]C_2[/tex] = specific heat of coffee= [tex]4000 J/kg^oC[/tex]

[tex]m_1[/tex] = mass of metal = x

[tex]m_2[/tex] = mass of coffee = 0.3 kg

[tex]T_f[/tex] = final temperature of aluminum metal= [tex]110^oC[/tex]

[tex]T_1[/tex] = initial temperature of aluminum metal = [tex]-10^oC[/tex]

[tex]T_2[/tex] = initial temperature of coffee= [tex]140^oC[/tex]

Now put all the given values in the above formula, we get

[tex]x\times 900 J/kg^oC\times (110-(-10))^oC=-(0.3 kg\times 4000 J/kg^oC\times (110-140)^oC[/tex]

[tex]x=0.333 kg[/tex]

Mass of aluminum cubes = 0.3333 kg = 333.3 g

If mass of 1 cube is 1 gram, then numbers of cubes in 333.3 grams will be:

[tex]=\frac{333.3 g}{1 g}=333.3\approx 330[/tex]

330 cubes of aluminum cubes will be required.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE