Consider the following hypothesis test:H 0: = 17H a: 17A sample of 40 provided a sample mean of 14.12. The population standard deviation is 4.a. Compute the value of the test statistic (to 2 decimals). (If answer is negative, use minus "-" sign.)b. What is the p-value (to 4 decimals)?c. Using = .05, can it be concluded that the population mean is not equal to 17? SelectYesNoItem 3Answer the next three questions using the critical value approach.d. Using = .05, what are the critical values for the test statistic (to 2 decimals)? ±e. State the rejection rule: Reject H 0 if z is Selectgreater than or equal togreater thanless than or equal toless thanequal tonot equal toItem 5 the lower critical value and is Selectgreater than or equal togreater thanless than or equal toless thanequal tonot equal toItem 6 the upper critical value.f. Can it be concluded that the population mean is not equal to 17?

Respuesta :

Answer:

We conclude that the population mean is not equal to 17.

Step-by-step explanation:

We are given the following in the question:

Population mean, μ = 17

Sample mean, [tex]\bar{x}[/tex] = 14.12

Sample size, n = 40

Alpha, α = 0.05

Population standard deviation, σ = 4

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu = 17\\H_A: \mu \neq 17[/tex]

We use Two-tailed z test to perform this hypothesis.

a) Formula:

[tex]z_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }[/tex]

Putting all the values, we have

[tex]z_{stat} = \displaystyle\frac{14.12 - 17}{\frac{4}{\sqrt{40}} } = -4.5536[/tex]

b) P-value can be calculated from the standard z-table.

P-value = 0.0000

c) Since the p-value is less than the significance level, we reject the null hypothesis and accept the alternate hypothesis. Thus, the population mean is not equal to 17

d) Now, [tex]z_{critical} \text{ at 0.05 level of significance } = \pm 1.96[/tex]

e) Rejection Rule:

We reject the null hypothesis if it is less than lower critical value and greater than the upper critical value

If the z-statistic lies outside the acceptance region which is from -1.96 to +1.96, we reject the null hypothesis.

f) Since the calculated z-stat lies outside the acceptance region, we reject the null hypothesis and accept the alternate hypothesis. Thus, the population mean is not equal to 17.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE