Answer : The heat of the reaction is -221.6 kJ
Explanation :
Heat released by the reaction = Heat absorbed by the calorimeter
[tex]q_{rxn}=-q_{cal}[/tex]
[tex]q_{cal}=c_{cal}\times \Delta T[/tex]
where,
[tex]q_{rxn}[/tex] = heat released by the reaction = ?
[tex]q_{cal}[/tex] = heat absorbed by the calorimeter
[tex]c_{cal}[/tex] = specific heat of calorimeter = [tex]97.1kJ/^oC=97100J/^oC[/tex]
[tex]\Delta T[/tex] = change in temperature = [tex](T_{final}-T_{initial})=(27.282-25.000)=2.282^oC[/tex]
Now put all the given values in the above formula, we get:
[tex]q_{cal}=(97100J/^oC)\times (2.282^oC)[/tex]
[tex]q_{cal}=221582.2J=221.6kJ[/tex]
As, [tex]q_{rxn}=-q_{cal}[/tex]
So, [tex]q_{rxn}=-221.6kJ[/tex]
Thus, the heat of the reaction is -221.6 kJ