How to find the volume of the cone

Answer:
The closest measurement to the volume of hat is 84.82 in.³.
Step-by-step explanation:
Given:
The dimensions of hat are height(h) 9 inches and diameter(d) 6 inches.
Now, to find the volume of cone:
Putting the formula [tex]\frac{1}{3}\pi r^{2}h[/tex].
Radius(r) is not given, finding the radius:
Radius(r)=half of the diameter(d)
[tex]r=\frac{d}{2}[/tex]
[tex]r=\frac{6}{2}[/tex]
[tex]r=3[/tex].
Then, [tex]\frac{1}{3}\pi r^{2}h[/tex]
=[tex]\frac{1}{3}\times\pi \times3^{2}\times9[/tex]
=[tex]\frac{1}{3}\times3.14\times9\times9[/tex] ([tex]\pi =3.14[/tex])
=[tex]\frac{1}{3} \times254.34[/tex]
=[tex]\frac{254.34}{3}[/tex]
=[tex]84.78[/tex] in.³
So, the volume is 84.78 in.³ .
Therefore, the closest measurement to the volume of hat is 84.82 in.³.