A force is dependent on position and is given by (4.00 N/m)x+(2.0 N/m2)xy. An object begins at the origin. It first moves in a straight line to x = 1.00 m, y = 0.00 m. It then moves in a straight line to x = 1.00 m, y = 1.00 m. How much work is done on the object by the force during the motion described?

Respuesta :

Answer:

[tex]W=2\sqrt{26} \,J[/tex]

Explanation:

Given that:

Relation of force with position, [tex]F=4x+2xy[/tex] N

Initial position of the object, [tex](x_0,y_0)=(0m,0m)[/tex]

second position of the object,  [tex](x_2,y_2)=(1m,0m)[/tex]

final position of the object,  [tex](x_f,y_f)=(1m,1m)[/tex]

Now, from the schematic we get the displacement as:

[tex]s=\sqrt{2}\,m[/tex]

Now we calculate :

The force in X direction for initial displacement

[tex]F_x=4\times 1+2\times 1\times 0[/tex]

[tex]F_x=4\,N[/tex]

The force in Y direction for initial displacement

[tex]F_y=4\times 1+2\times 1\times 1[/tex]

[tex]F_y=6\,N[/tex]

Now the resultant force in the direction of displacement:

[tex]F_R=\sqrt{F_x\,^2+F_y\,^2}[/tex]

[tex]F_R=\sqrt{4^2+6^2}[/tex]

[tex]F_R=2\sqrt{13}\,N[/tex]

Therefore work:

[tex]W=F_R\times s[/tex]

[tex]W=2\sqrt{13}\times \sqrt{2}[/tex]

[tex]W=2\sqrt{26} \,J[/tex]

Ver imagen creamydhaka
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE