Answer:
See answer
Explanation:
Given quantities:
[tex]\eta = 0.05\\ W=90[W]\\r=0.0285[m][/tex]
where [tex]\eta[/tex] is the efficiency of the lightbulb (visible light is 5% of the total power), [tex]W[/tex] is the total power of the lightbulb, r is the radius of the lightbulb in meters.
Intensity is power divided by area:
[tex]I =\frac{P}{A}[/tex]
a) Now the effective power is [tex]\eta*W[/tex], therefore:
[tex]I =\frac{\eta*W}{\pi r^2}=\frac{0.05*90}{4\pi (0.0285)^2}=440.87[W/m^2][/tex]
b) Now the intensity is the average poynting vector is related to the magnitudes of the maximum electric field and magnetic field amplitudes, following:
[tex]S_{average}= \frac{EB}{2\mu_{0}}[W/m][/tex]
now [tex]E[/tex] and [tex]B[/tex] are related:
[tex]E=cB\\ B=\frac{E}{c}[/tex] and [tex]c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}} [/tex]
replace in [tex]S_{average}[/tex]
[tex]S_{average}=I= \frac{c \epsilon_{0}E^2}{2}[W/m][/tex]
we replace the values and we get:
[tex]E= \sqrt{\frac{2I}{\epsilon_{0}c}}[/tex]
[tex]E = \sqrt{\frac{2(440.8)}{8.85*10^{-12}3*10^8}}=576.24[V/m][/tex]
therefore
[tex]B=\frac{E}{c}=\frac{576.24}{3*10^{8}}=1.92*10^{-6}[T][/tex]