Respuesta :
Answer:[tex]\theta =1.43 ^{\circ}[/tex]
Explanation:
Given
Force exerted by machine [tex]F=3.31 \times 10^2 N[/tex]
Weight of Block [tex]W=mg=1.32\times 10^4 N[/tex]
Considering inclination to be [tex]\theta [/tex]
After resolving Forces We get
[tex]mg\sin \theta =F[/tex]
[tex]\sin \theta =\frac{F}{mg}[/tex]
[tex]\sin \theta =\frac{3.31 \times 10^2}{1.32\times 10^4}[/tex]
[tex]\sin \theta =2.507\times 10^{-2}[/tex]
[tex]\sin \theta =0.02507[/tex]
[tex]\theta =\sin ^{-1}(0.02507)[/tex]
[tex]\theta =1.43 ^{\circ}[/tex]

The maximum angle which the slope can make with the horizontal if the task is to be completed is [tex] 1.44° [/tex]
Given the Parameters :
- Weight of block, W = mg = [tex]1.32 \times 10^{4} N [/tex]
- Force exerted by machine, F = [tex]3.31 \times 10^{2} N [/tex]
The force made with the horizontal, we use the relation :
- [tex] F = mgSin\theta [/tex]
Making [tex] \theta [/tex] the subject :
[tex] \theta = sin^{-1}[ \frac{F}{Mg} ][/tex]
[tex] \theta = sin^{-1}[ \frac{3.31 \times 10^{2}}{1.32 \times 10^{4} } ][/tex]
[tex] \theta = sin^{-1}[ 0.0250757 ] = 1.436 [/tex]
Therefore, the maximum angle the slope can make with the horizontal in this scenario is [tex] 1.44° [/tex]
Learn more :https://brainly.com/question/14897423