Respuesta :
Answer:
[tex]C(n)=14n+2.50[/tex]
Step-by-step explanation:
Let
n -----> number of tickets
C ----> represent the cost of buy n tickets online
we have the ordered pairs
(1,16.50) and (2,30.50)
Find out the slope of the linear equation
The formula to calculate the slope between two points is equal to
[tex]m=\frac{C2-C1}{n2-n1}[/tex]
substitute the values
[tex]m=\frac{30.50-16.50}{2-1}[/tex]
[tex]m=14[/tex]
Find the equation of the line in slope intercept form
[tex]C=m(n)+b[/tex]
we have
[tex]m=14[/tex]
[tex]point(1,16.50)[/tex]
substitute
[tex]16.50=14(1)+b[/tex]
[tex]b=16.50-14[/tex]
[tex]1b=2.50[/tex]
substitute
[tex]C(n)=14n+2.50[/tex]
The domain of the function is all positive integers (whole numbers) including zero
{0,1,2,3,4,...}
The cost of movie tickets follows an arithmetic pattern.
- The recursive formula is [tex]\mathbf{C(n)= C(n-1) + 14}[/tex]
- The domain of the function is: [tex]\mathbf{[0,\infty)}[/tex]
The given parameters are:
[tex]\mathbf{a_1 = 16.50}[/tex] --- the cost of one movie ticket
[tex]\mathbf{a_2 = 30.50}[/tex] --- the cost of two movie tickets
(a) The recursive formula
Express 30.50 as 16.50 + 14
[tex]\mathbf{a_2 = 16.50 + 14}[/tex]
Substitute [tex]\mathbf{a_1 = 16.50}[/tex]
[tex]\mathbf{a_2 = a_1 + 14}[/tex]
Express 1 as 2 -1
[tex]\mathbf{a_2 = a_{2-1} + 14}[/tex]
Substitute n for 2
[tex]\mathbf{a_n = a_{n-1} + 14}[/tex]
Express as a function
[tex]\mathbf{C(n)= C(n-1) + 14}[/tex]
Hence, the recursive formula is [tex]\mathbf{C(n)= C(n-1) + 14}[/tex]
(b) The domain
The number of tickets cannot be negative.
So, the domain of the function is: [tex]\mathbf{[0,\infty)}[/tex]
Read more about functions at:
https://brainly.com/question/1632425