what is the closest length of RT?

Answer: 14
Step-by-step explanation:
Since it is a right angles triangle , Pythagoras theorem will come into play,which states that;
the square of the hypotenuses = square of the adjacent + square of the opposite , that is
[tex]22^{2}[/tex] = [tex](RT)^{2}[/tex] + [tex]17^{2}[/tex]
Therefore:
[tex](RT)^{2}[/tex] = [tex]22^{2}[/tex] - [tex]17^{2}[/tex]
[tex](RT)^{2}[/tex] = 484 - 289
[tex](RT)^{2}[/tex] = 195
RT = [tex]\sqrt{195}[/tex]
RT = 13.96
RT≈ 14
Answer:
c)14
Step-by-step explanation:
Pythagorean theorem:
TR² + RG² = TG²
TR² + 17² = 22²
TR² = 22² - 17² =(22+17)(22-17)
= 39*5 = 195 ≈ 196
TR =√196 = 14