Answer:
[tex]v=6.04*10^7\frac{m}{s}[/tex]
Explanation:
The change in the wavelength observed due to the relativistic doppler effect when the source approaches is given by the following expression:
[tex]\lambda_e=\lambda_o\frac{\sqrt{1+\frac{v}{c}}}{\sqrt{1-\frac{v}{c}}}[/tex]
Here, [tex]\lambda_e[/tex] is the emmited wavelength (red), [tex]\lambda_o[/tex] is the observed wavelength (green) and v is the approaching speed. So, [tex]\lambda_e=650nm[/tex] and [tex]\lambda_e=530nm[/tex]. Solving for v:
[tex]\frac{\lambda_e}{\lambda_o}=\frac{\sqrt{1+\frac{v}{c}}}{\sqrt{1-\frac{v}{c}}}\\\frac{\lambda_e^2}{\lambda_o^2}=\frac{1+\frac{v}{c}}{{1-\frac{v}{c}}}\\\\(1-\frac{v}{c})\frac{\lambda_e^2}{\lambda_o^2}=1+\frac{v}{c}\\\frac{\lambda_e^2}{\lambda_o^2}-\frac{v\lambda_e^2}{c\lambda_o^2}=1+\frac{v}{c}\\\frac{v}{c}+\frac{v\lambda_e^2}{c\lambda_o^2}=\frac{\lambda_e^2}{\lambda_o^2}-1\\v(\frac{1}{c}+\frac{\lambda_e^2}{c\lambda_o^2})=\frac{\lambda_e^2}{\lambda_o^2}-1\\[/tex]
[tex]v=\frac{\frac{\lambda_e^2}{\lambda_o^2}-1}{\frac{1}{c}+\frac{\lambda_e^2}{c\lambda_o^2}}\\v=\frac{\frac{\lambda_e^2}{\lambda_o^2}-1}{\frac{1}{c}(1+\frac{\lambda_e^2}{\lambda_o^2})}[/tex]
Recall that [tex]c=3*10^8\frac{m}{s}[/tex], replacing this and the wavelengths:
[tex]v=\frac{\frac{(650nm)^2}{(530nm)^2}-1}{\frac{1}{3*10^8\frac{m}{s}}(1+\frac{(650nm)^2}{(530nm)^2})}\\\\v=6.04*10^7\frac{m}{s}[/tex]
This is the incredible speed at which you would have to be moving to see the red light as green light.