A basketball has a mass of 575 g. Moving to the right and heading downward at an angle of 31° to the vertical, it hits the floor with a speed of 4 m/s and bounces up with nearly the same speed, again moving to the right at an angle of 31° to the vertical. What was the momentum change ? (Take the axis to be to the right and the axis to be up. Express your answer in vector form.)

Respuesta :

Answer:

Taking the x axis to the right and the y axis to be up, the total change of momentum is [tex]\Delta \vec{ p} = 3.9429 \frac{kg \ m}{s} \hat{j} [/tex]

Explanation:

The momentum [tex]\vec{p}[/tex] is given by:

[tex]\vec{p} = m \ \vec{v}[/tex]

where m is the mass and [tex]\vec{v}[/tex] is the velocity. Now, taking the suffix i for the initial condition, and the suffix f for the final condition, the change in momentum will be:

[tex]\Delta \vec{ p} = \vec{p}_f - \vec{p}_i[/tex]

[tex]\Delta \vec{ p} = m \ \vec{v}_f - m \ \vec{v}_i[/tex]

[tex]\Delta \vec{ p} = m (\ \vec{v}_f -  \ \vec{v}_i)[/tex]

As we know the mass of the ball, we just need to find the initial and final velocity.

Knowing the magnitude and direction of a vector, we can obtain the Cartesian components with the formula

[tex]\ \vec{A} = | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )[/tex]

where [tex]| \vec{A} |[/tex] is the magnitude of the vector and θ is the angle measured from the x axis.

Taking the x axis to the right and the y axis to be up, the initial velocity will be:

[tex]\vec{v}_i = 4 \frac{m}{s} ( \ cos ( - (90  \ °- 31 \°)) , sin( - (90  \ ° - 31\°) ) ) =[/tex]

where minus sign  appears cause the ball is going downward, and we subtracted the 31 ° as it was measured from the y axis

So, the initial velocity is

[tex]\vec{v}_i = 4 \frac{m}{s} ( \ cos ( - 59 \°) , sin( - 59 \°)) =[/tex]

[tex]\vec{v}_i =  ( \ 2.0601  \ \frac{m}{s} , - 3.4286 \frac{m}{s}) =[/tex]

The final velocity is

[tex]\vec{v}_i = 4 \frac{m}{s} ( \ cos ( 90  \ °- 31 \°) , sin( 90  \ ° - 31\°)) =[/tex]

[tex]\vec{v}_i = 4 \frac{m}{s} ( \ cos ( 59 \°) , sin(  59 \°)) =[/tex]

[tex]\vec{v}_i =  ( \ 2.0601  \ \frac{m}{s} ,  3.4286 \frac{m}{s}) =[/tex]

So, the change in momentum will be

[tex]\Delta \vec{ p} = m (\ \vec{v}_f -  \ \vec{v}_i)[/tex]

[tex]\Delta \vec{ p} = 0.575 \ kg (\  ( \ 2.0601  \ \frac{m}{s} ,  3.4286 \frac{m}{s} -  ( \ 2.0601  \ \frac{m}{s} , - 3.4286 \frac{m}{s}))[/tex]

[tex]\Delta \vec{ p} = 0.575 \ kg (\  ( \ 2.0601  \ \frac{m}{s} -  \ 2.0601  \ \frac{m}{s},  3.4286 \frac{m}{s} +  3.4286 \frac{m}{s}) [/tex]

[tex]\Delta \vec{ p} = 0.575 \ kg (\  0 , 2 * 3.4286 \frac{m}{s} ) [/tex]

[tex]\Delta \vec{ p} = 0.575 \ kg * 2 * 3.4286 \frac{m}{s} \hat{j} [/tex]

[tex]\Delta \vec{ p} = 3.9429 \frac{kg \ m}{s} \hat{j} [/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE