Answer:
12.6 years
Step-by-step explanation:
The equation of adoption of the pastures is
[tex]\frac{dN}{dt}= a*N*(1-\frac{N}{N^{*} } )\\[/tex]
Rearranging we have
[tex]\frac{dN}{N*(1-\frac{N}{N^{*}} )}={a*dt}[/tex]
Integrating
[tex]\int\frac{dN}{N*(1-\frac{N}{N^{*}} )}=\int{a*dt}\\-ln(\frac{N^{*} }{N}-1)+C=a*t[/tex]
At t=0, N(0)=141
[tex]-ln(\frac{N^{*} }{N}-1)+C=a*t\\-ln(17015/141-1)+C=0.49*0\\C=ln(17015/141-1)=ln(119.67)=4.785\\[/tex]
The 80% of the population of ranchers represents 0.8*17015=13612 ranchers, so the time needed to reach that ammount of adoption is
[tex]-ln(\frac{N^{*} }{N}-1)+C=a*t\\\\-ln(17015/13612-1)+4.785=0.49*t\\1,386+4.785=0.49*t\\t= 6.171/0.49 = 12.6[/tex]
The time it takes for a 80% adoption is 12.6 years