Answer:
a) 0.1375
b) 0.3708
c) 0.56
d) 0.05
Step-by-step explanation:
a) If 4.4 is the mean number of blank in a sheet 4ft x 8 ft = 32ft^2. Then the mean number of blank per square foot is 4.4/32 =0.1375
b) X=Number of blank pixels per ft^2
[tex]X=Poisson(\lambda), E[X]=\lambda=0.1375, Var(X)=\lambda, \sigma =\sqrt{\lambda} =\sqrt{0.1375}=0.3708[/tex]
c) The mean number of blank in a sheet 2ft x 3 ft = 6ft^2 is 6*0.1375=0.825
Then [tex]X=Poisson(\lambda=0.825)[/tex]
[tex]P(X\geq 1)=1-P(X=0)[/tex]
[tex]P(X=x)=\frac{e^{-\lambda}\lambda^x}{x!}, P(X=0)=e^{-0.825}=0.43[/tex]
[tex]P(X\geq 1)=1-0.43=0.56[/tex]
d) [tex]P(X>2)=1-P(X\leq 2)=1-\sum_{i=0}^{2}P(X=i)[/tex]
[tex]P(X>2)=1-\sum_{i=0}^{2}\frac{e^{-\lambda}\lambda^{i}}{i!}, \lambda=0.825[/tex]
P(X>2)=1-0.94=0.05