[tex]\displaystyle\lim_{x\to5}3x-8=7[/tex]
means to say that for any given [tex]\varepsilon>0[/tex], we can find [tex]\delta[/tex] such that anytime [tex]|x-5|<\delta[/tex] (i.e. the whenever [tex]x[/tex] is "close enough" to 5), we can guarantee that [tex]|(3x-8)-7|<\varepsilon[/tex] (i.e. the value of [tex]3x-8[/tex] is "close enough" to the limit value).
What we want to end up with is
[tex]|(3x-8)-7|=|3x-15|=3|x-5|<\varepsilon[/tex]
Dividing both sides by 3 gives
[tex]|x-5|<\dfrac\varepsilon3[/tex]
which suggests [tex]\delta=\dfrac\varepsilon3[/tex] is a sufficient threshold.
The proof itself is essentially the reverse of this analysis: Let [tex]\varepsilon>0[/tex] be given. Then if
[tex]|x-5|<\delta=\dfrac\varepsilon3\implies3|x-5|=|3x-15|=|(3x-8)-7|<\varepsilon[/tex]
and so the limit is 7. QED