Returning once again to our table top example of a horizontal mass on a low-friction surface with m = 0.254 kg and k = 10.0 N/m with damping characterized by y = 0.628 (1/s). If Fo = 0.5 N, calculate A and d for the following values of w: 0.628 rad/s, 3.14 rad/s, 6.28 rad/s, and 9.42 rad/s.

Respuesta :

Explanation:

Given that,

Mass = 0.254 kg

Spring constant [tex[\omega_{0}= 10.0\ N/m[/tex]

Force = 0.5 N

y = 0.628

We need to calculate the A and d

Using formula of A and d

[tex]A=\dfrac{\dfrac{F_{0}}{m}}{\sqrt{(\omega_{0}^2-\omega^{2})^2+y^2\omega^2}}[/tex].....(I)

[tex]tan d=\dfrac{y\omega}{(\omega^2-\omega^2)}[/tex]....(II)

Put the value of [tex]\omega=0.628\ rad/s[/tex] in equation (I) and (II)

[tex]A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-0.628)^2+0.628^2\times0.628^2}}[/tex]

[tex]A=0.0198[/tex]

From equation (II)

[tex]tan d=\dfrac{0.628\times0.628}{((10.0^2-0.628)^2)}[/tex]

[tex]d=0.0023[/tex]

Put the value of [tex]\omega=3.14\ rad/s[/tex] in equation (I) and (II)

[tex]A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-3.14)^2+0.628^2\times3.14^2}}[/tex]

[tex]A=0.0203[/tex]

From equation (II)

[tex]tan d=\dfrac{0.628\times3.14}{((10.0^2-3.14)^2)}[/tex]

[tex]d=0.0120[/tex]

Put the value of [tex]\omega=6.28\ rad/s[/tex] in equation (I) and (II)

[tex]A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-6.28)^2+0.628^2\times6.28^2}}[/tex]

[tex]A=0.0209[/tex]

From equation (II)

[tex]tan d=\dfrac{0.628\times6.28}{((10.0^2-6.28)^2)}[/tex]

[tex]d=0.0257[/tex]

Put the value of [tex]\omega=9.42\ rad/s[/tex] in equation (I) and (II)

[tex]A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-9.42)^2+0.628^2\times9.42^2}}[/tex]

[tex]A=0.0217[/tex]

From equation (II)

[tex]tan d=\dfrac{0.628\times9.42}{((10.0^2-9.42)^2)}[/tex]

[tex]d=0.0413[/tex]

Hence, This is the required solution.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE