In an oscillating LC circuit with L equals 0.048 H and C = 4uF the current is initially a maximum. How long in ms will it take before the capacitor is fully charged for the first time?

Respuesta :

Answer:

The times is 0.688 ms.

Explanation:

Given that,

Inductance L= 0.048 H

Capacitor C= 4\mu F

The current is initially maximum

[tex]I=I_{max}[/tex]

We know that,

[tex]I=I_{max}\cos\omega t[/tex]

Where, [tex]\omega=\dfrac{1}{\sqrt{LC}}[/tex]

We need to calculate the time

[tex]\dfrac{dq}{dt}=I[/tex]

[tex]dq=Idt[/tex]....(I)

On integrating equation (I)

[tex]\int_{0}^{q}{dq}=\int_{0}^{t}{I_{max}\cos\omega t}dt[/tex]

[tex]q=I_{max}(\dfrac{\sin\omega t}{\Omega})_{0}^{t}[/tex]

[tex]q=\dfrac{I_{max}}{\omega}\sin\omega t[/tex]

If [tex]q = q_{max}[/tex]

[tex]\sin\omega t=1[/tex]

[tex]\omega t=\dfrac{\pi}{2}[/tex]

[tex]t =\dfrac{\pi}{2\omega}[/tex]

Put the value of [tex]\omega[/tex]

[tex]t=\dfrac{\pi}{2\times\dfrac{1}{\sqrt{LC}}}[/tex]

[tex]t=\dfrac{\pi\sqrt{LC}}{2}[/tex]

[tex]t=\dfrac{\pi}{2}\sqrt{LC}[/tex]

[tex]t=\dfrac{\pi}{2}\sqrt{0.048\times4\times10^{-6}}[/tex]

[tex]t=0.688\ msec[/tex]

Hence, The times is 0.688 ms.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE