Respuesta :

Answer:

Option B

[tex]x=4+9i[/tex]  and  [tex]x=4-9i[/tex]

Step-by-step explanation:

we have

[tex]x^{2} -8x+97=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2} -8x+97=0[/tex]

so

[tex]a=1\\b=-8\\c=97[/tex]

substitute in the formula

[tex]x=\frac{-(-8)(+/-)\sqrt{-8^{2}-4(1)(97)}} {2(1)}[/tex]

[tex]x=\frac{8(+/-)\sqrt{-324}} {2}[/tex]

Remember that

[tex]i^{2} =-1[/tex]

[tex]i=\sqrt{-1}[/tex]

[tex]x=\frac{8(+/-)18i} {2}[/tex]

[tex]x=\frac{8(+)18i} {2}=4+9i[/tex]

[tex]x=\frac{8(-)18i} {2}=4-9i[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE