9. 37 packages an Reived from Ups. The Packages have a mean of 170 lbs & a standard deviation of 33 pounds, what is the 951 confidence interval for the tre mean weight Of All packages Recieved by the parcel Service? Also state margin of error,

Respuesta :

Answer:

Confidence interval  [tex]159.366[/tex] to [tex]180.633[/tex]

Margin of error is 10.633

Step-by-step explanation:

Confidence interval formula : [tex]\bar{x}\pm z \times \frac{\sigma}{\sqrt{n}}[/tex]

Mean = [tex]\bar{x}=170[/tex]

Standard deviation = [tex]\sigma= 33[/tex]

Sample size = n = 37

Confidence interval = 95%

z value fro 95% confidence level is 1.96

Substitute the values in the formula :

Confidence interval  [tex]\bar{x}\pm z \times \frac{\sigma}{\sqrt{n}}[/tex]

Confidence interval  [tex]170 \pm 1.96 \times \frac{33}{\sqrt{37}}[/tex]

Confidence interval  [tex]170 - 1.96 \times \frac{33}{\sqrt{37}}[/tex] to [tex]170 + 1.96 \times \frac{33}{\sqrt{37}}[/tex]

Confidence interval  [tex]159.366[/tex] to [tex]180.633[/tex]

Formula of margin of error : [tex]z \times \frac{\sigma}{\sqrt{n}}[/tex]

Margin of error : [tex]1.96 \times \frac{33}{\sqrt{37}}[/tex]

                          = [tex]10.633[/tex]

Hence Confidence interval  [tex]159.366[/tex] to [tex]180.633[/tex]  and Margin of error is 10.633

                       

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE