Answer:
The pressure upstream and downstream of a shock wave are related as
[tex]\frac{P_{1}}{P_{o}}=\frac{2\gamma M^{2}-(\gamma -1)}{\gamma +1}[/tex]
where,
[tex]\gamma [/tex]= Specific Heat ratio of air
M = Mach number upstream
We know that [tex]\gamma _{air}=1.4[/tex]
Applying values we get
[tex]\frac{P_{1}}{100kPa}=\frac{2\times 1.4\times 1.8^{2}-(1.4 -1)}{1.4 +1}\\\\\frac{P_{1}}{100kPa}=3.61\\\\\therefore P_{1}=361.33kPa(Absloute)[/tex]
Similarly the temperature downstream is obtained by the relation
[tex]\frac{T_{1}}{T_{o}}=\frac{[2\gamma M^{2}-(\gamma -1)][(\gamma -1)M^{2}+2]}{(\gamma +1)^{2}M^{2}}[/tex]
Applying values we get
[tex]\frac{T_{1}}{423}=\frac{[2\times 1.4\times 1.8^{2}-(1.4-1)][(1.4-1)1.8^{2}+2]}{(1.4+1)^{2}\times 1.8^{2}}\\\\\therefore \frac{T_{1}}{423}=1.53\\\\\therefore T_{1}=647.85K=374.85^{o}C[/tex]
The Mach number downstream is obtained by the relation
[tex]M_{d}^{2}=\frac{(\gamma -1)M^{2}+2}{2\gamma M^{2}-(\gamma -1)}\\\\\therefore M_{d}^{2}=\frac{(1.40-1)\times 1.8^{2}+2}{2\times1.4\times 1.8^{2}-(1.4-1)}\\\\\therefore M_{d}^{2}=0.38\\\\M_{d}=0.616[/tex]