contestada

Aflat, circular, steel loop of radius 75 cm is at rest in a uniform magnetic field. The field is perpendicular to the plane of the loop. The field is changing with time, according to an exponential function: B(t)=(1.4T) e- (0.057sec-1)t. When is the induced emf equal to 5% of its initial value? 170 msec 245 msec 52.6 msec O 39.5 msec

Respuesta :

Answer:

The time is 52.6 sec.

Explanation:

Given that,

Radius = 75 cm

Magnetic field

[tex]B(t)=1.4e^{-(0.057)t}[/tex]

We need to calculate the area

[tex]A= \pir^2[/tex]

Put the value into the formula

[tex]A=\pi\times(75\times10^{-2})^2[/tex]

[tex]A=1.767\ m^2[/tex]

We need to calculate the emf

[tex]\epsilon=-\dfrac{dB}{dt}[/tex]

[tex]\epsilon=-\dfrac{d(BA\cos0^{\circ})}{dt}[/tex]

Put the value into the formula

[tex]\epsilon=-\dfrac{d(1.4e^{-(0.057)t}\times1.767\cos0^{\circ})}{dt}[/tex]

[tex]\epsilon=-1.4\times1.767\cos0\times\dfrac{d(e^{-(0.057)t})}{dt}[/tex]

[tex]\epsilon=-2.474\dfrac{d(e^{-(0.057)t})}{dt}[/tex]

[tex]\epsilon=-2.474\times(-0.057)e^{-0.057t}[/tex]

[tex]\epsilon=0.141018e^{-0.057t}[/tex]

For initial value of emf , t = 0

[tex]\epsilon=0.141018e^{0}[/tex]

[tex]\epsilon=0.141018[/tex]

Now, If the induced emf equal to 5% of its initial value

We need to calculate the emf

[tex]\dfrac{5}{100}\times0.141018=0.141018e^{-{0.057t}}[/tex]

[tex]\dfrac{5}{100}=e^{-0.057t}[/tex]

[tex]-0.057t=ln\dfrac{5}{100}[/tex]

[tex]t=\dfrac{2.9957}{0.057}[/tex]

[tex]t=52.6\ s[/tex]

Hence, The time is 52.6 sec.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE