Answer:
Given that
[tex]\overrightarrow{v_{a}}=3\widehat{i}\\\\\overrightarrow{v_{b}}=4\widehat{i}+\widehat{j}\\\\\therefore \overrightarrow{v_{ba}}=4\widehat{i}+\widehat{j}-3\widehat{i}\\\\\overrightarrow{v_{ba}}=\widehat{i}+\widehat{j}\\\\\frac{\overrightarrow{dr_{ba}}}{dt}=\widehat{i}+\widehat{j}\\\\\therefore \overrightarrow{r_{ba}}=\int (\widehat{i}+\widehat{j})dt\\\\\therefore \overrightarrow{r_{ba}}=t\widehat{i}+t\widehat{j}+\overrightarrow{r_{o}}[/tex]
Now it is given that
[tex]\overrightarrow{r_{o}}=-2\widehat{i}-6\widehat{j}[/tex]
[tex]\therefore \overrightarrow{r_{ba}}=(t-2)\widehat{i}+(t-6)\widehat{j}[/tex]
Now the distance can be calculates as
[tex]r=\sqrt{x^{2}+y^{2}}\\\\r^{2}=(t-2)^{2}+(t-6)^{2}\\\\[/tex]
Differentiating with respect to 't' and equating to zero for minimizing the function we get
[tex]r=\sqrt{x^{2}+y^{2}}\\\\r^{2}=(t-2)^{2}+(t-6)^{2}\\\\2r\frac{dr}{dt}=2(t-2)+2(t-6)\\\\2r\frac{dr}{dt}=4t-16\\\\\therefore \frac{dr}{dt}=0\\\\\Rightarrow 4t-16=0\\\\\therefore t=4[/tex]
The shortest distance is thus given by
[tex]r^{2}=(4-2)^{2}+(4-6)^{2}\\\\r=2\sqrt{2}[/tex]