By what factor is the intensity of sound at a rock concert louder than that of a whisper when the two intensity levels are 120 dB and 21 dB, respectively? a) 3.16x1010 d) 7.94x10 b) 1.58x1010 e) 3.98x109 c) 6.50x1010

Respuesta :

Answer:

d) [tex]7.94\times 10^{9}[/tex]

Explanation:

β₁ = sound level of sound at rock concert = 120 dB

β₂ = sound level of sound due to whisper = 21 dB

I₁ = Intensity of sound at rock concert

I₂ = Intensity of sound due to whisper

sound level of sound at rock concert is given as

[tex]\beta _{1} = 10 log\left ( \frac{I_{1}}{10^{-12}} \right )[/tex]

[tex]120 = 10 log\left ( \frac{I_{1}}{10^{-12}} \right )[/tex]        

[tex]12 = log\left ( \frac{I_{1}}{10^{-12}} \right )[/tex]          eq-1

sound level due to whisper is given as

[tex]\beta _{2} = 10 log\left ( \frac{I_{2}}{10^{-12}} \right )[/tex]

[tex]21 = 10 log\left ( \frac{I_{2}}{10^{-12}} \right )[/tex]

[tex]2.1 = log\left ( \frac{I_{2}}{10^{-12}} \right )[/tex]               eq-2

subtracting eq-2 from eq-1

[tex]12 - 2.1 = log\left ( \frac{I_{1}}{10^{-12}} \right ) - log\left ( \frac{I_{2}}{10^{-12}} \right )[/tex]

[tex]9.9 = log\left ( \frac{I_{1}}{I_{2}} \right )[/tex]

[tex]\left ( \frac{I_{1}}{I_{2}} \right ) = 7.94\times 10^{9}[/tex]

Answer:

The factor is 7.94x10⁹

Explanation:

please look at the solution in the attached Word file

Ver imagen lcoley8
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE