Answer:
Average power, P = 845 watts
Explanation:
It is given that,
High power laser has a beam diameter of 1 mm, d = 1 mm
Radius, r = 0.0005 m
Electric field, [tex]E=0.9\ MV/m=0.9\times 10^6\ V/m[/tex]
Average power of the laser is given by :
[tex]P=I\times A[/tex]
Where
I is the intensity, [tex]I=\dfrac{1}{2}\epsilon_oE^2c[/tex]
This gives, [tex]P=\dfrac{1}{2}\epsilon_oE^2c \times \pi r^2[/tex]
[tex]P=\dfrac{1}{2}\pi r^2\epsilon_oE^2c[/tex]
[tex]P=\dfrac{1}{2}\pi \times (0.0005)^2\times 8.85\times 10^{-12}\times (0.9\times 10^6)^2\times 3\times 10^8[/tex]
P = 844.51 watts
or
P = 845 watts
So, the average power of the laser is 845 watts. Hence, this is the required solution.