Answer:
[tex]A(-1,4)\to A''(-1,-1)[/tex]
[tex]B(0,2)\to B''(1,0)[/tex]
[tex]C(1,2)\to C''(1,1)[/tex]
[tex]D(-2,4)\to D''(-1,2)[/tex]
Step-by-step explanation:
The given trapezoid has vertices at A(−1,4), B(0,2), C(1,2) and D(2,4).
The transformation rule for 90° counterclockwise rotation is
[tex](x,y)\to(-y,x)[/tex]
This implies that:
[tex]A(-1,4)\to A'(-4,-1)[/tex]
[tex]B(0,2)\to B'(-2,0)[/tex]
[tex]C(1,2)\to C'(-2,1)[/tex]
[tex]D(2,4)\to D'(-4,2)[/tex]
This is followed by a translation 3 units to the right.
This also has the rule: [tex](x,y)\to (x+3,y)[/tex]
[tex]A'(-4,-1)\to A''(-1,-1)[/tex]
[tex]B'(-2,0)\to B''(1,0)[/tex]
[tex]C'(-2,1)\to C''(1,1)[/tex]
[tex]D'(-4,2)\to D''(-1,2)[/tex]
Therefore:
[tex]A(-1,4)\to A''(-1,-1)[/tex]
[tex]B(0,2)\to B''(1,0)[/tex]
[tex]C(1,2)\to C''(1,1)[/tex]
[tex]D(-2,4)\to D''(-1,2)[/tex]