Respuesta :

gmany

Answer:

x = 10 or x = 100

Step-by-step explanation:

The domain of the equation: x > 0.

We have:

[tex]2+(\log x)^2=3\log x[/tex]

Substitute [tex]\log x=t[/tex]:

[tex]2+t^2=3t[/tex]         subtract 3t from both sides

[tex]t^2-3t+2=0[/tex]

[tex]t^2-2t-t+2=0[/tex]

[tex]t(t-2)-1(t-2)=0[/tex]

[tex](t-2)(t-1)=0\iff t-2=0\ \vee\ t-1=0[/tex]

[tex]t-2=0[/tex]          add 2 to both sides

[tex]t=2[/tex]

[tex]t-1=0[/tex]      add 1 to both sides

[tex]t=1[/tex]

We return to substitution:

[tex]t=2\to\log x=2[/tex]

and

[tex]t=1\to\log x=1[/tex]

Use

[tex]\log_ab=c\iff a^c=b[/tex]

[tex]\log a=\log_{10}a[/tex]

[tex]\log_aa=1[/tex]

[tex]\log x=2\iff x=10^2\to x=100\\\\\log x=1\to x=10[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE