Respuesta :

Answer:

The numbers are

[tex]4+2\sqrt{6}[/tex]  and  [tex]-4+2\sqrt{6}[/tex]

Step-by-step explanation:

Let

x ------> one number

(x-8) ------> the another number

we know that

[tex]x^{2} +(x-8)^{2}=80[/tex]

[tex]x^{2} +x^{2}-16x+64=80[/tex]

[tex]2x^{2}-16x+64-80=0[/tex]

[tex]2x^{2}-16x-16=0[/tex]

Simplify

[tex]x^{2}-8x-8=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2}-8x-8=0[/tex]  

so

[tex]a=1\\b=-8\\c=-8[/tex]

substitute in the formula

[tex]x=\frac{8(+/-)\sqrt{-8^{2}-4(1)(-8)}} {2(1)}[/tex]

[tex]x=\frac{8(+/-)\sqrt{96}} {2}[/tex]

[tex]x=\frac{8(+/-)4\sqrt{6}} {2}[/tex]

[tex]x=4(+/-)2\sqrt{6}[/tex]

[tex]x1=4(+)2\sqrt{6}[/tex]

[tex]x2=4(-)2\sqrt{6}[/tex]

so

the solution must be a positive real number

[tex]x=4(+)2\sqrt{6}[/tex]

[tex]x-8=4(+)2\sqrt{6}-8[/tex] ------> [tex]x-8=-4(+)2\sqrt{6}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE