You connect a 250-2 resistor, a 1.20-mH inductor, and a 1.80-uF capacitor in series across a 60.0-Hz, 120-V (peak) source. The approximate impedance of your circuit A) 1.49 k22 B) 1.47 kO2 C) 0.4522 D) 250 22 E) None of these is correct.

Respuesta :

Answer:

The  impedance is 1.49 kΩ.

(A) is correct option.

Explanation:

Given that,

Resistor = 250

Inductor [tex]L= 1.20\ mH[/tex]

Capacitor [tex]C= 1.80\ \muF[/tex]

Frequency f = 60.0 Hz

Voltage = 120 V

We need to calculate the [tex]\omega[/tex]

Using formula of  [tex]\omega[/tex]

[tex]\omega = 2\pif[/tex]

Put the value into the formula

[tex]\omega=2\times3.14\times60.0[/tex]

[tex]\omega=376.8\ rad/s[/tex]

We need to calculate the [tex]X_{L}[/tex]

Using formula of  [tex]X_{L}[/tex]

[tex]X_{L}=\omega L[/tex]

Put the value into the formula

[tex]X_{L}=376.8\times1.20\times10^{-3}[/tex]

[tex]X_{L}=0.4522\ \Omega[/tex]

We need to calculate the [tex]X_{C}[/tex]

Using formula of  [tex]X_{C}[/tex]

[tex]X_{C}=\dfrac{1}{\omega C}[/tex]

Put the value into the formula

[tex]X_{C}=\dfrac{1}{376.8\times1.80\times10^{-6}}[/tex]

[tex]X_{C}=1474.404\ \Omega[/tex]

We need to calculate the impedance

Using formula of impedance

[tex]Z=\sqrt{R^2+(X_{L}-X_{C})^2}[/tex]

[tex]Z=\sqrt{250^2+(0.4522-1474.404)^2}[/tex]

[tex]Z=1.49\ k\Omega[/tex]

Hence, The  impedance is 1.49 kΩ.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE