If a laser light is compose of photons each with an energy of 4.58 × 10−19 J, what is the photon energy of this light in units of nanometers, nm? Report your answer with correct significant figures and correct units.

Respuesta :

Answer : The photon energy of this light in units of nanometers, (nm) is, [tex]4.34\times 10^{-2}nm[/tex]

Solution :

Formula used :

[tex]E=\frac{h\times c}{\lambda}[/tex]

where,

E = energy of photon = [tex]4.58\times 10^{-19}J[/tex]

h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]

c = speed of light = [tex]3\times 10^8m/s[/tex]

[tex]\lambda[/tex] = wavelength = ?

Now put all the given values in the above formula, we get:

[tex]4.58\times 10^{-19}J=\frac{(6.626\times 10^{-34}Js)\times (3\times 10^8m/s)}{\lambda}[/tex]

[tex]\lambda=4.3017\times 10^{-7}m=434.017\times 10^{-9}m=434.017nm=4.34\times 10^{-2}nm[/tex]

conversion used : [tex](1nm=1\times 10^{-9}m)[/tex]

Therefore, the photon energy of this light in units of nanometers, (nm) is, [tex]4.34\times 10^{-2}nm[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE