Respuesta :

Answer: [tex]1.94\times 10^{-34}m[/tex]

Explanation:

Formula used : [tex]\lambda=\frac{h}{m\times v}[/tex]

where,

[tex]\lambda[/tex] = wavelength  =?

h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]

m = mass  = 200 g = 0.2kg

v = velocity  =[tex]17m/s[/tex]

Now put all the given values in this formula, we get

[tex]\lambda=\frac{6.626\times 10^{-34}Js}{0.2kg\times 17m/s}=1.94\times 10^{-34}m[/tex]

The de Broglie wavelength for the ball is [tex]1.94\times 10^{-34}m[/tex]

Answer:

The deBoglie  wavelength is 1.95 ×10⁻³⁴ m

Explanation:

To calculate the deBoglie wavelength, we use the formula;

λ = h/ρ

where  ρ is    the momentum

So first we will find the momentum, momentum(ρ) = mv

m is the mass and v is the velocity, the mass must be in kilogram

So from the question, mass (m) = 200g converting this to kilogram, mass(m) =200/1000=0.2kg

v =17m/s

We can now substitute our values in ρ = mv and solve for momentum

Momentum(ρ) = mv

                        =0.2×17

                        =3.4 kgm/s

ρ  = 3.4 kgm/s

We can now proceed to find the deBoglie wavelength

deBoglie wavelength(λ) = h/ρ              h is a constant = 6.626×10⁻³⁴ j.s

deBoglie  wavelength(λ) = h/ρ

                                         = 6.626×10⁻³⁴/3.4

                                           =1.95 ×10⁻³⁴ m

Therefore the deBoglie  wavelength is 1.95 ×10⁻³⁴ m

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE