A 2135 cm3 sample of dry air has a pressure of 98.4 kpa at 127 degrees Celsius. What is the volume of the sample if the Temperature is increased to 206degrees c when the pressure is kept constant

Respuesta :

the equation is p1 x v1 divided by T1 = p1 x v2 = T2 but since the pressure is kept constant you do not even need it so the equation would now be v1 divided by t1 = v2 divided by t2

2135 cm3 divided by 127 degrees celcius = x divided by 206

answer: 3460 cm3

Answer:

The volume of the sample if the temperature is increased to 206°C when the pressure is kept constant is 3,463.07 cm³.

Explanation:

Charles's Law consists in the relationship between the volume and temperature of a certain amount of ideal gas, where constant pressure is maintained. The relationship is produced by means of a constant of proportionality. Then, at a constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases.

In summary, Charles's law is a law that says that when the amount of gas and pressure remain constant, the ratio between volume and temperature will always have the same value:

[tex]\frac{V}{T}=k[/tex]

It is now possible to assume that you have a certain volume of V1 gas that is at a temperature V1 at the beginning of the experiment. If you vary the volume of gas to a new V2 value, then the temperature will change to T2, and it will be met:

[tex]\frac{V1}{T1} =\frac{V2}{T2}[/tex]

In this case:

  • V1=2135 cm³
  • T1=127 °C
  • V2=?
  • T2=206 °C

Then:

[tex]\frac{2135 cm^{3} }{127 C} =\frac{V2}{206 C} \\[/tex]

Solving you get:

[tex]V2=\frac{2135 cm^{3} }{127C} *206 C[/tex]

V2=3,463.07 cm³

The volume of the sample if the temperature is increased to 206°C when the pressure is kept constant is 3,463.07 cm³.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE