Answer:
(a) 10.29 sec (b) 63.19 N (c)1652.4 N
Explanation:
We have given mass m =81 kg
Radius r = 10 m
Velocity v = 6.10 m/sec
(a) Time period of the motion [tex]T=\frac{2\pi r}{v}=\frac{2\times 3.14\times 10}{6.10}=10.29sec[/tex]
(b) At highest point net force[tex]F_{net}=F_{normal}-F_{gravity}[/tex] [tex]F_net=F_{gravity}+F_{normal}[/tex]
[tex]F_{net}[/tex] is given by [tex]F_{net}=ma_c[/tex] where [tex]a_c[/tex] is centripetal acceleration
[tex]a_c=\frac{v^2}{r}=\frac{10.29^2}{10}=10.59 m/sec^2[/tex]
So [tex]F_{net}=81\times 10.59=857.79\ N[/tex]
[tex]F_{gravity}=81\times 9.81=794.61\ N[/tex]
So [tex]F_{normal}=857.79-794.61=63.19[/text]
(c) At lowest point [tex]F_{net}=F_{normal}-F_{gravity}[/tex]
So [tex]F_{normal}=F_{gravity}+F_{net}[/tex]
[tex]F_{normal}=857.79+794.61=1652.4 N[/tex]