A circular-motion addict of mass 81.0 kg rides a Ferris wheel around in a vertical circle of radius 10.0 m at a constant speed of 6.10 m/s. (a) What is the period of the motion? What is the magnitude of the normal force on the addict from the seat when both go through (b) the highest point of the circular path and (c) the lowest point?

Respuesta :

Answer:

(a) 10.29 sec (b) 63.19 N (c)1652.4 N

Explanation:

We have given mass m =81 kg

Radius r = 10 m

Velocity v = 6.10 m/sec

(a) Time period of the motion [tex]T=\frac{2\pi r}{v}=\frac{2\times 3.14\times 10}{6.10}=10.29sec[/tex]

(b) At highest point net force[tex]F_{net}=F_{normal}-F_{gravity}[/tex] [tex]F_net=F_{gravity}+F_{normal}[/tex]

[tex]F_{net}[/tex] is given by [tex]F_{net}=ma_c[/tex] where [tex]a_c[/tex] is centripetal acceleration

[tex]a_c=\frac{v^2}{r}=\frac{10.29^2}{10}=10.59 m/sec^2[/tex]

So [tex]F_{net}=81\times 10.59=857.79\ N[/tex]

[tex]F_{gravity}=81\times 9.81=794.61\ N[/tex]

So [tex]F_{normal}=857.79-794.61=63.19[/text]

(c) At lowest point [tex]F_{net}=F_{normal}-F_{gravity}[/tex]

So [tex]F_{normal}=F_{gravity}+F_{net}[/tex]

[tex]F_{normal}=857.79+794.61=1652.4 N[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE