Answer:
(i) 3.5385 ohm, 3.768 ohm (ii) 39.89 A (III) 4773.857 W (vi) 348 var (vii) 0.9973 (viii) 4.1796°
Explanation:
We have given voltage V =120 volt
Frequency f=60 Hz
Resistance R =3 ohm
Inductance L =0.01 H
Capacitance C =0.00075 farad
(i) reactance of of inductor [tex]X_L=\omega L=2\pi fL=2\times 3.14\times 60\times 0.01=3.768ohm[/tex]
[tex]X_C=\frac{1}{\omega C}=\frac{1}{2\times 3.14\times 60\times 0.00075}=3.5385ohm[/tex]
(ii) Total impedance [tex]Z=\sqrt{R^2+(X_L-X_C)^2}=\sqrt{3^2+(3.768-3.5385)^2}=3.008ohm[/tex]
Current [tex]i=\frac{V}{Z}=\frac{120}{3.008}=39.89A[/tex]
(viii) power factor [tex]cos\Phi =\frac{R}{Z}=\frac{3}{3.008}=0.9973[/tex]
(VII) [tex]cos\Phi =0.9973[/tex]
[tex]\Phi =4.1796^{\circ}[/tex]
So power factor angle is 4.1796°
(iii) Apparent power [tex]P=VICOS\Phi =120\times 39.89\times 0.9973=4773.875W[/tex]
(vi) Reactive power [tex]Q=VISIN\Phi =120\times 39.89\times SIN4.17^{\circ}=348var[/tex]