Answer:
angular acceleration=[tex]2 \frac{rad}{s^{2} }[/tex]
Explanation:
Kinematic equation for uniformly accelerated circular motion:
[tex]wf=wi+\alpha *t[/tex]
wf=final angular speed [tex](\frac{rad}{s} )[/tex]
wi=initial angular speed [tex](\frac{rad}{s} )[/tex]
[tex]\alpha[/tex]= angular acceleration [tex](\frac{rad}{s^{2} } )[/tex]
We replace wf=10[tex]\frac{rad}{s}[/tex],wi=0, t=5s in the equation(1):
[tex]10=0+\alpha *5[/tex]
[tex]\alpha =\frac{10}{5}[/tex]
[tex]\alpha =2 \frac{rad}{s^{2} }[/tex]
The angular acceleration is 2 [tex]\frac{rad}{s^{2} }[/tex]