The answer is either [tex]x=\frac{-1}{2}+\frac{1}{2}\sqrt{2005}\\[/tex] or [tex]x=\frac{-1}{2}+\frac{-1}{2}\sqrt{2005}[/tex]
To solve: Let's solve your equation step-by-step.
5x2+5x−x2−x=2004
Step 1: Simplify both sides of the equation.
4x2+4x=2004
Step 2: Subtract 2004 from both sides.
4x2+4x−2004=2004−2004
4x2+4x−2004=0
Step 3: Use quadratic formula with a=4, b=4, c=-2004.
x= −b±√b2−4ac /2a
x= −4±√32080 /8
[tex]x=\frac{-1}{2}+\frac{1}{2}\sqrt{2005}\\[/tex] or [tex]x=\frac{-1}{2}+\frac{-1}{2}\sqrt{2005}[/tex]
Answer:
-22.89, 21.89 to the nearest hundredth.
Step-by-step explanation:
5[x^2]+5[x]-x^2-x=2004
5x^2 - x^2 + 5x - x - 2004 = 0
4x^2 + 4x - 2004 = 0
Divide through by 4:
x^2 + x - 501 = 0
Using the quadratic formula:
x = -1 +/- √(1^2 - 4*1*-501) / 2
x = -0.5 +/- 44.777/2
= -0.5 +/- 22.389
= -22.89, 21.89.