Respuesta :
Answer:
4[tex]\sqrt{5}[/tex]
Step-by-step explanation:
Using the rule of radicals
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]
Given
[tex]\sqrt{80}[/tex]
= [tex]\sqrt{16(5)}[/tex]
= [tex]\sqrt{16}[/tex] × [tex]\sqrt{5}[/tex]
= 4[tex]\sqrt{5}[/tex] ← in simplest form
Answer:
[tex]4\sqrt{5}[/tex]
Explanation:
Before we begin, remember that:
[tex]\sqrt{xy}=\sqrt{x} * \sqrt{y}[/tex]
Now, for the given problem
80 can be written as 16×5
Therefore:
[tex]\sqrt{80}=\sqrt{16*5}[/tex]
Applying the above rule:
[tex]\sqrt{80}=\sqrt{16} * \sqrt{5}[/tex]
We know that [tex]\sqrt{16}=4[/tex] while [tex]\sqrt{5}[/tex] is irrational, so we'll replace [tex]\sqrt{16}[/tex] with 4 and leave [tex]\sqrt{5}[/tex] as it is
This means that:
[tex]\sqrt{80}=\sqrt{16} * \sqrt{5} = 4\sqrt{5}[/tex]
Hope this helps :)