Respuesta :
Answer:
See explanation
Step-by-step explanation:
You are given the function [tex]f(x)=3x-1[/tex]
The domain of the function are all possible values of variable x, so you can find f(x) for x=-2, 0, 3, 5:
[tex]f(-2)=3\cdot (-2)-1=-6-1=-7\\ \\f(0)=3\cdot 0-1=0-1=-1\\ \\f(3)=3\cdot 3-1=9-1=8\\ \\f(5)=3\cdot 5-1=15-1=14[/tex]
The table is
[tex]\begin{array}{cc}x&f(x)\\-2&-7\\0&-1\\3&8\\5&14\end{array}[/tex]
The inverse function [tex]f^{-1}(x)[/tex] has the domain which is the range of the function f(x) (all possible values of f(x)), so the domain of inverse function is {-7,-1,8,14}
Answer:
Step-by-step explanation:
1) . The given function is f(x) = 3x - 1
Using the domain or value of x = -2, 0, 3, and 5 we have to formulate a table for the value of the function.
f(-2) = 3(-2) - 1
= -7
f(0) = 3×0 - 1
= -1
f(3) = 3(3) - 1
= 9 - 1
= 8
f(5) = 3(5) - 1
= 15 - 1
= 14
x -2 0 3 5
y -7 -1 8 14
2). Since f(x) = 3x - 1
Now we can rewrite the function in the form of an equation.
y = 3x - 1
To formulate the inverse of the given function we will flip x by y.
x = 3y - 1
then we will solve it for the value of y.
3y = x + 1
y = [tex]\frac{1}{3}(x + 1)[/tex]
Or [tex]f^{-1}(x)=\frac{1}{3}(x+1)[/tex]
Now this inverse function will be defined for all real numbers.
Therefore, domain of [tex]f^{-1}(x)[/tex] will be all real numbers.