1. Evaluate the function f(x)=3x-1 using the domain of -2, 0, 3, and 5. Results are to be shown in a table.

2. Determine the domain of the inverse of the function given in problem 2. Explain the reasoning.

Respuesta :

frika

Answer:

See explanation

Step-by-step explanation:

You are given the function [tex]f(x)=3x-1[/tex]

The domain of the function are all possible values of variable x, so you can find f(x) for x=-2, 0, 3, 5:

[tex]f(-2)=3\cdot (-2)-1=-6-1=-7\\ \\f(0)=3\cdot 0-1=0-1=-1\\ \\f(3)=3\cdot 3-1=9-1=8\\ \\f(5)=3\cdot 5-1=15-1=14[/tex]

The table is

[tex]\begin{array}{cc}x&f(x)\\-2&-7\\0&-1\\3&8\\5&14\end{array}[/tex]

The inverse function [tex]f^{-1}(x)[/tex] has the domain which is the range of the function f(x) (all possible values of f(x)), so the domain of inverse function is {-7,-1,8,14}

Answer:

Step-by-step explanation:

1) . The given function is f(x) = 3x - 1

Using the domain or value of x = -2, 0, 3, and 5 we have to formulate a table for the value of the function.

f(-2) = 3(-2) - 1

      = -7

f(0) = 3×0 - 1

     = -1

f(3) = 3(3) - 1

     = 9 - 1

     = 8

f(5) = 3(5) - 1

     = 15 - 1

     = 14

x     -2     0    3     5

y      -7    -1     8    14

2). Since f(x) = 3x - 1

Now we can rewrite the function in the form of an equation.

y = 3x - 1

To formulate the inverse of the given function we will flip x by y.

x = 3y - 1

then we will solve it for the value of y.

3y = x + 1

y = [tex]\frac{1}{3}(x + 1)[/tex]

Or [tex]f^{-1}(x)=\frac{1}{3}(x+1)[/tex]

Now this inverse function will be defined for all real numbers.

Therefore, domain of [tex]f^{-1}(x)[/tex] will be all real numbers.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE