Answer:
[tex]d=\sqrt{29}[/tex]
Step-by-step explanation:
The trick here is knowing the distance formula:
[tex]d=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}[/tex]
using that equation with (-1,4) and (1,-1), we get:
[tex]d=\sqrt{(1-(-1))^2+((-1)-4)^2}\\d=\sqrt{(1+1)^2+(-1-4)^2}\\d=\sqrt{(2)^2+(-5)^2}\\d=\sqrt{4+25}\\d=\sqrt{29}\\[/tex]