Respuesta :

Answer:

The coordinates of point R are (6 , 3)

Step-by-step explanation:

* Lets revise the rule of the mid-point

- The mid point (x , y)of a line whose end points are [tex](x_{1},y_{1})[/tex]

 and [tex](x_{2},y_{2})[/tex] is [tex](\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})[/tex]

∵ M is the mid point of line RS

The coordinates of point M are (7 , 5)

∴ x = 7 and y = 5

∵ The coordinates of point R are [tex](x_{1},y_{1})[/tex]

The coordinates of point S are (8 , 7)

∴ [tex](x_{2},y_{2})[/tex]  = (8 , 7)

∴ [tex]x_{2}=8[/tex] and [tex]y_{2}=7[/tex]

- By using the rule above

∵ [tex]x=\frac{x_{1}+x_{2}}{2}[/tex]

∵ [tex]7=\frac{x_{1}+8}{2}[/tex]

- Multiply both sides by 2

∴ [tex]14=x_{1}+8[/tex]

- Subtract both sides by 8

∴ [tex]x_{1}=6[/tex]

∴ the x-coordinate of point R is 6

∵ [tex]y=\frac{y_{1}+y_{2}}{2}[/tex]

∵ [tex]5=\frac{y_{1}+7}{2}[/tex]

- Multiply both sides by 2

∴ [tex]10=y_{1}+7[/tex]

- Subtract both sides by 7

∴ [tex]y_{1}=3[/tex]

∴ the y-coordinate of point R is 3

* The coordinates of point R are (6 , 3)

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE