Find the volume of a trough 5 meters long whose ends are equilateral triangles, each of whose
sides has a length of 2 meters.

Respuesta :

Answer:

[tex]V=5\sqrt{3}\ m^3[/tex]

Step-by-step explanation:

we know that

The volume of a trough is equal to

[tex]V=BL[/tex]

where

B is the area of equilateral triangle

L is the length of a trough

step 1

Find the area of  equilateral triangle B

The area of a equilateral triangle applying the law of sines is equal to

[tex]B=\frac{1}{2} b^{2} sin(60\°)[/tex]

where

[tex]b=2\ m[/tex]

[tex]sin(60\°)=\frac{\sqrt{3}}{2}[/tex]

substitute

[tex]B=\frac{1}{2}(2)^{2} (\frac{\sqrt{3}}{2})[/tex]

[tex]B=\sqrt{3}\ m^{2}[/tex]

step 2

Find the volume of a trough

[tex]V=BL[/tex]

we have

[tex]B=\sqrt{3}\ m^{2}[/tex]

[tex]L=5\ m[/tex]

substitute

[tex]V=(\sqrt{3})(5)[/tex]

[tex]V=5\sqrt{3}\ m^3[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE