Calculate the wire pressure for a round copper bar with an original cross-sectional area of 12.56 mm2 to a 30% reduction of area, given that the included die angle is 300 with a coefficient of friction (μ) of 0.08 and the yield stress for copper is 350 MPa.

Respuesta :

Answer:153.76 MPa

Explanation:

[tex]Initial Area\left ( A_0\right )=12.56 mm^2[/tex]

[tex]Final Area\left ( A_f\right )=0.7\times 12.56 mm^2=8.792 mm^2[/tex]

[tex]Die angle=30^{\circ}[/tex]

[tex]\alpha =\frac{30}{2}=15^{\circ}[/tex]

[tex]\mu =0.08[/tex]

[tex]Yield stress\left ( \sigma _y \right )=350 MPa[/tex]

[tex]B=\mu cot\left ( \aplha\right )=0.2985[/tex]

[tex]\sigma _{pressure}=\sigma _y\left [\frac{1+B}{B}\right ]\left [ 1-\frac{A_f}{A_0}\right ]^B[/tex]

[tex]\sigma _{pressure}=350\left [\frac{1+0.2985}{0.2985}\right ]\left [ 1-\frac{8.792}{12.56}\right ]^{0.2985}[/tex]

[tex]\sigma _{pressure}=153.76 MPa[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE