In circuits, the average power is defined as the average of the instantaneous power over one period. The instantaneous power can be found as:
[tex]p(t)=v(t)i(t)[/tex]
So the average power is:
[tex]P=\frac{1}{T}\intop_{0}^{T}p(t)dt[/tex]
But:
[tex]v(t)=v_{m}cos(\omega t) \\ \\ i(t)=i_{m}cos(\omega t)[/tex]
So:
[tex]P=\frac{1}{T}\intop_{0}^{T}v_{m}cos(\omega t)i_{m}cos(\omega t)dt \\ \\ P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}cos^{2}(\omega t)dt \\ \\ But: cos^{2}(\omega t)=\frac{1+cos(2\omega t)}{2}[/tex]
[tex]P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}(\frac{1+cos(2\omega t)}{2} )dt \\\\P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}[\frac{1}{2}+\frac{cos(2\omega t)}{2}]dt \\\\P=\frac{v_{m}i_{m}}{T}[\frac{1}{2}(t)\right|_0^T +\frac{sin(2\omega t)}{4\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2T}[(t)\right|_0^T +\frac{sin(2\omega t)}{2\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2}[/tex]
In terms of RMS values:
[tex]V_{RMS}=V=\frac{v_{m}}{\sqrt{2}} \\ \\ I_{RMS}=I=\frac{i_{m}}{\sqrt{2}} \\ \\ Then: \\ \\ P=VI[/tex]