Respuesta :

frika

Answer:

120 square units

Step-by-step explanation:

In triangle PSQ, PS=SQ. Let PS=SQ=x units.

Since SQ-PQ=1, PQ=SQ-1=x-1 units.

The perimeter of the triangle PSQ is 50 units, so

PS+SQ+PQ=50 units.

Substitute PS=SQ=x un. and PQ=x-1 un.

x+x+x-1=50

3x=51

x=17

Hence

PS=SQ=17 units,

PQ=16 units.

Use Heron's formula to find the area:

[tex]A=\sqrt{p(p-a)(p-b)(p-c)},[/tex]

where p is semi-perimeter and a,b,c are lengths of sides.

[tex]p=\dfrac{17+17+16}{2}=25,\\ \\\\A=\sqrt{25(25-17)(25-17)(25-16)}=\sqrt{25\cdot 8\cdot 8\cdot 9}=5\cdot 8\cdot 3=120\ un^2.[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE