Respuesta :

Answer:

Step-by-step explanation:

23A:   Simplify

V^2  + 11V + 10

There are no like terms

Answer when simplify: V^2 + 11V + 10

23B.  Factor:

Steps: V^2  +  11V  + 10

Break the expression into groups:

(V^2  + V)  +  (10V   +  10)

Factor out: V From V^2  + V:   V(V  + 1)

Factor out:  10 From  10V  +  10:   10(V  +  1)

V(V  +  1)  +  10(V  +  1)

Factor out common term:  V  +  1

Factor: Therefore your Answer: (V  + 1) (V  +  10)

24:  Factor

Steps: k^2   +  11k  + 30

Break the expression into groups:

(K^2 + 5K)(6K + 30)

Factor out: k from K^2 + 5K ====>  K(K + 5)

Factor out 6  from 6K + 30 ===> 6(K + 5)

=  k(k + 5)  +  6(k  + 5)

Factor out common term: k  + 5

Factor:  Therefore your Answer is: (K + 5) (K + 6)

25:  Factor

Steps:     R^2   -   1

Rewrite:  1  as  1^2

R^2   -  1^2

Apply difference of two square formulas:

x^2   -   y^2   =   (x   +   y)(x   -  y)

r^2   -  1^2  =  (r  +  1)(r   -  1)

Therefore your answer:  (r  + 1)(r  -  1)

26:  Factor

Steps:  V^2  -  V  - 2

Break the expressions into groups:

(V^2  + V)  +   ( -2V   -  2)

Factor out V from V^2  + V:    V(V  +  1)

Factor out  -2  from  -2v   - 2:    -2(V  +  1)

V(V   +   1)   - 2(V  +  1)

Factor out common term:  V   +  1

Therefore your answer: (V  +  1)(V  -  2)

27:  Factor

Steps:  4N^2  -  15N   -  25

Break expression into groups:

(4N^2  +  5N)   +   ( -20N  -  25)

Factor out N from 4N^2  +  5N:   4(4N  +  5)

Factor out   -5   from  -20N  -  25:    -5(4N   +  5)

N(4N  +  5)  -  5(4N   +   5)

Factor out common term:  4N   +   5

Therefore your answer:   (4n  +  5)(N   -  5)

28: Factor:

Steps:   N^2   +  3N   -  54

Break the expression into group:

(N^2  -  6N)   +   (9N   -  54)

Factor out N from N^2  -  6N:    N(N   - 6)

Factor out   9  From 9N  -  54:    9(N  -  6)

N(N  -  6)    +   9(N   -   6)

Factor out common term:    N    -    6

Therefore your answer:   (N   -  6)(N   +   9)

Hope that helps, Have an awesome day!     :)

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE