What are the zeros of the quadratic function f(x) = 6x2 + 12x – 7?

x = –1 – and x = –1 +
x = –1 – and x = –1 +
x = –1 – and x = –1 +
x = –1 – and x = –1 +

Respuesta :

epic42

It an expression or a way of saying f(x)=6x2+12-7

Answer:

[tex]x=-1+\frac{\sqrt{78} }{6}[/tex] and

[tex]x=-1-\frac{\sqrt{78} }{6}[/tex]

Step-by-step explanation:

[tex]f(x) = 6x^2 + 12x - 7[/tex]

To find out the zeros of the quadratic function, we apply quadratic formula

[tex]x=\frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]

From the given f(x), the value of a=6, b=12, c=-7

Plug in all the values in the formula

[tex]x=\frac{-12+-\sqrt{12^2-4(6)(-7)}}{2(6)}[/tex]

[tex]x=\frac{-12+-\sqrt{312}}{2(6)}[/tex]

[tex]x=\frac{-12+-2\sqrt{78}}{2(6)}[/tex]

Now divide each term by 12

[tex]x=-1+-\frac{\sqrt{78} }{6}[/tex]

We will get two values for x

[tex]x=-1+\frac{\sqrt{78} }{6}[/tex] and

[tex]x=-1-\frac{\sqrt{78} }{6}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE