Respuesta :

Answer:

[tex]\frac{13-7\sqrt{3}}{2}[/tex]

Step-by-step explanation:

We need to rationalize the denominator of [tex]= \frac{5-\sqrt{3}}{4+2\sqrt{3}}[/tex]. For rationalizing we multiply the equation by [tex]\frac{4-2\sqrt{3}}{4-2\sqrt{3}}[/tex]

So, solving

[tex]= \frac{5-\sqrt{3}}{4+2\sqrt{3}}*\frac{4-2\sqrt{3}}{4-2\sqrt{3}} \\=\frac{(5-\sqrt{3})(4-2\sqrt{3})}{4+2\sqrt{3}*4-2\sqrt{3}}\\=\frac{(5-\sqrt{3})(4-2\sqrt{3})}{(4)^2-(2\sqrt{3})^2}\\= \frac{5(4-2\sqrt{3})-\sqrt{3}(4-2\sqrt{3})}{16-(4*3)}\\=\frac{20-10\sqrt{3}-4\sqrt{3}+2*3}{16-12}\\=\frac{20+6-14\sqrt{3}}{4}\\=\frac{26-14\sqrt{3}}{4}\\= \frac{2(13-7\sqrt{3})}{4}\\=\frac{13-7\sqrt{3}}{2}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE