The ornament below is composed of two congruent square pyramids. Each square pyramid has base side lengths of 2 inches and a height of 2.5 inches.



What is the volume, in cubic inches, of the ornament?

Respuesta :

Answer:

The volume of the ornament is [tex]6\frac{2}{3}\ in^{3}[/tex]

Step-by-step explanation:

we know that

The volume of the ornament is equal to the sum of  the volume of the two congruent square pyramids

so

[tex]V=2[\frac{1}{3}b^{2} h][/tex]

we have

[tex]b=2\ in[/tex]

[tex]h=2.5\ in[/tex]

substitute

[tex]V=2[\frac{1}{3}(2)^{2} (2.5)][/tex]

[tex]V=\frac{20}{3}\ in^{3}[/tex]

Convert to mixed number

[tex]\frac{20}{3}=\frac{18}{3}+\frac{2}{3}=6\frac{2}{3}\ in^{3}[/tex]

Answer:

C

Step-by-step explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE