Answer:
The volume of the ornament is [tex]6\frac{2}{3}\ in^{3}[/tex]
Step-by-step explanation:
we know that
The volume of the ornament is equal to the sum of the volume of the two congruent square pyramids
so
[tex]V=2[\frac{1}{3}b^{2} h][/tex]
we have
[tex]b=2\ in[/tex]
[tex]h=2.5\ in[/tex]
substitute
[tex]V=2[\frac{1}{3}(2)^{2} (2.5)][/tex]
[tex]V=\frac{20}{3}\ in^{3}[/tex]
Convert to mixed number
[tex]\frac{20}{3}=\frac{18}{3}+\frac{2}{3}=6\frac{2}{3}\ in^{3}[/tex]