60 Points Please Help!!!! Been Stuck For Hours!!!!
Perform the indicated operation. What is the numerator in the final expression? Type your answer in the space provided. Do not include spaces in your answer. If the answer requires an exponent, use the ^ key to indicate the power. For example, if the answer is 2x2y, type 2x^2y.

x over 2 + y over 3 - z over 4

Respuesta :

Answer:

The Numerator is 6x + 4y - 3z

Step-by-step explanation:

Step  1  :

           z

Simplify   —

           4

Equation at the end of step  1  :

  x    y     z

 (— +  —) -  —

  2    3     4

Step  2  :

           y

Simplify   —

           3

Equation at the end of step  2  :

  x    y     z

 (— +  —) -  —

  2    3     4

Step  3  :

           x

Simplify   —

           2

Equation at the end of step  3  :

  x    y     z

 (— +  —) -  —

  2    3     4

Step  4  :

Calculating the Least Common Multiple :

4.1    Find the Least Common Multiple  

     The left denominator is :       2  

     The right denominator is :       3  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 0 1

3 0 1 1

Product of all  

Prime Factors  2 3 6

     Least Common Multiple:  

     6  

Calculating Multipliers :

4.2    Calculate multipliers for the two fractions  

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 3

  Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

4.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.  

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      x • 3

  ——————————————————  =   —————

        L.C.M               6  

  R. Mult. • R. Num.      y • 2

  ——————————————————  =   —————

        L.C.M               6  

Adding fractions that have a common denominator :

4.4       Adding up the two equivalent fractions  

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x • 3 + y • 2     3x + 2y

—————————————  =  ———————

      6              6    

Equation at the end of step  4  :

 (3x + 2y)    z

 ————————— -  —

     6        4

Step  5  :

Calculating the Least Common Multiple :

5.1    Find the Least Common Multiple  

     The left denominator is :       6  

     The right denominator is :       4  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 2 2

3 1 0 1

Product of all  

Prime Factors  6 4 12

     Least Common Multiple:  

     12  

Calculating Multipliers :

5.2    Calculate multipliers for the two fractions  

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 2

  Right_M = L.C.M / R_Deno = 3

Making Equivalent Fractions :

5.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      (3x+2y) • 2

  ——————————————————  =   ———————————

        L.C.M                 12      

  R. Mult. • R. Num.      z • 3

  ——————————————————  =   —————

        L.C.M              12  

Adding fractions that have a common denominator :

5.4       Adding up the two equivalent fractions  

(3x+2y) • 2 - (z • 3)     6x + 4y - 3z

—————————————————————  =  ————————————

         12                    12      

Final result :

 6x + 4y - 3z

 ————————————

      12    

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE